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Remark about formulation style:

The citations have been written in two forms, as stand-alone sentences of the type

Ngô Bào Châu proved the Fundamental Lemma in the theory of automorphic forms through the
introduction of new algebro-geometric methods.

and also in a subordinate clause form, where a preamble is understood, as in

[Ngô Bào Châu is awarded a Fields Medal]
for his proof of the Fundamental Lemma in the theory of automorphic forms through the intro-
duction of new algebro-geometric methods.

where what appears in blue comes from the context, and is not part of this form of the citation.

For instance, on the Diploma, which has a header that reads (more or less)

At the 2010 International Congress of Mathematicians,
the International Mathematical Union awards

a Fields Medal to

this is completed by filling in the Fields Medallist’s name, Ngô Bào Châu, and continued with the subordinate
clause form of the citation.

When the Fields Medal is not mentioned in the header or context, the sentence becomes

Ngô Bào Châu is awarded a Fields Medal for his proof of the Fundamental Lemma in the theory
of automorphic forms through the introduction of new algebro-geometric methods.

In settings where it is already amply clear (e.g. by a header of the website and/or accompanying text) that
the sentence given is the citation formulated by the Prize committee, the stand-alone sentence can be used
(without repeating again that The X Prize is awarded to Y for ..).

2



IMU – in connection with ICM 2014 EXTREMELY CONFIDENTIAL

FIELDS MEDALS (listed in alphabetical order of last names)

The Fields Medals are awarded every 4 years on the occasion of the International Congress of Mathemati-
cians to recognize outstanding mathematical achievement for existing work and for the promise of future
achievement.

Artur Avila

Citation sentence:

Artur Avila’s profound contributions to dynamical systems theory have changed the face of the field, using
the powerful idea of renormalization as a unifying principle.

Citation in subordinate clause form:

[Artur Avila is awarded a Fields Medal]
for his profound contributions to dynamical systems theory, which have changed the face of the field, using
the powerful idea of renormalization as a unifying principle.

Description in a few paragraphs:

Avila leads and shapes the field of dynamical systems. With his collaborators, he has made essential progress
in many areas, including real and complex one-dimensional dynamics, spectral theory of the one-frequency
Schrödinger operator, flat billiards and partially hyperbolic dynamics.

Avila’s work on real one-dimensional dynamics brought completion to the subject, with full understanding
of the probabilistic point of view, accompanied by a complete renormalization theory. His work in complex
dynamics led to a thorough understanding of the fractal geometry of Feigenbaum Julia sets.

In the spectral theory of one-frequency difference Schrödinger operators, Avila came up with a global de-
scription of the phase transitions between discrete and absolutely continuous spectra, establishing surprising
stratified analyticity of the Lyapunov exponent.

In the theory of flat billiards, Avila proved several long-standing conjectures on the ergodic behavior of
interval-exchange maps. He made deep advances in our understanding of the stable ergodicity of typical
partially hyperbolic systems.

Avila’s collaborative approach is an inspiration for a new generation of mathematicians.
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Manjul Bhargava

Citation sentence:

Manjul Bhargava has developed powerful new methods in the geometry of numbers and applied them to count
rings of small rank and to bound the average rank of elliptic curves.

Citation in subordinate clause form:

[Manjul Bhargava is awarded a Fields Medal]
for developing powerful new methods in the geometry of numbers, which he applied to count rings of small
rank and to bound the average rank of elliptic curves.

Description in a few paragraphs:

Bhargava’s thesis provided a reformulation of Gauss’s law for the composition of two binary quadratic forms.
He showed that the orbits of the group SL(2,Z)3 on the tensor product of three copies of the standard integral
representation correspond to quadratic rings (rings of rank 2 over Z) together with three ideal classes whose
product is trivial. This recovers Gauss’s composition law in an original and computationally effective manner.
He then studied orbits in more complicated integral representations, which correspond to cubic, quartic, and
quintic rings, and counted the number of such rings with bounded discriminant.

Bhargava next turned to the study of representations with a polynomial ring of invariants. The simplest
such representation is given by the action of PGL(2,Z) on the space of binary quartic forms. This has two
independent invariants, which are related to the moduli of elliptic curves. Together with his student Arul
Shankar, Bhargava used delicate estimates on the number of integral orbits of bounded height to bound the
average rank of elliptic curves. Generalizing these methods to curves of higher genus, he recently showed that
most hyperelliptic curves of genus at least two have no rational points.

Bhargava’s work is based both on a deep understanding of the representations of arithmetic groups and a
unique blend of algebraic and analytic expertise.
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Martin Hairer

Citation sentence:

Martin Hairer has made outstanding contributions to the theory of stochastic partial differential equations,
and in particular created a theory of regularity structures for such equations.

Citation in subordinate clause form:

[Martin Hairer is awarded a Fields Medal]
for his outstanding contributions to the theory of stochastic partial differential equations, and in particular
for the creation of a theory of regularity structures for such equations.

Description in a few paragraphs:

A mathematical problem that is important throughout science is to understand the influence of noise on
differential equations, and on the long time behavior of the solutions. This problem was solved for ordinary
differential equations by Itô in the 1940s. For partial differential equations, a comprehensive theory has proved
to be more elusive, and only particular cases (linear equations, tame nonlinearities, etc.) had been treated
satisfactorily.

Hairer’s work addresses two central aspects of the theory. Together with Mattingly he employed the Malliavin
calculus along with new methods to establish the ergodicity of the two-dimensional stochastic Navier-Stokes
equation.

Building on the rough-path approach of Lyons for stochastic ordinary differential equations, Hairer then
created an abstract theory of regularity structures for stochastic partial differential equations (SPDEs). This
allows Taylor-like expansions around any point in space and time. The new theory allowed him to construct
systematically solutions to singular non-linear SPDEs as fixed points of a renormalization procedure.

Hairer was thus able to give, for the first time, a rigorous intrinsic meaning to many SPDEs arising in physics.
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Maryam Mirzakhani

Citation:

Maryam Mirzakhani’s has made outstanding contributions to the dynamics and geometry of Riemann surfaces
and their moduli spaces.

Citation in subordinate clause form:

[Maryam Mirzakhani is awarded the Fields Medal]
for her outstanding contributions to the dynamics and geometry of Riemann surfaces and their moduli spaces.

Description in a few paragraphs:

Maryam Mirzakhani has made stunning advances in the theory of Riemann surfaces and their moduli spaces,
and led the way to new frontiers in this area. Her insights have integrated methods from diverse fields, such
as algebraic geometry, topology and probability theory.

In hyperbolic geometry, Mirzakhani established asymptotic formulas and statistics for the number of simple
closed geodesics on a Riemann surface of genus g. She next used these results to give a new and completely
unexpected proof of Witten’s conjecture, a formula for characteristic classes for the moduli spaces of Riemann
surfaces with marked points.

In dynamics, she found a remarkable new construction that bridges the holomorphic and symplectic aspects
of moduli space, and used it to show that Thurston’s earthquake flow is ergodic and mixing.

Most recently, in the complex realm, Mirzakhani and her coworkers produced the long sought-after proof of
the conjecture that – while the closure of a real geodesic in moduli space can be a fractal cobweb, defying
classification – the closure of a complex geodesic is always an algebraic subvariety.

Her work has revealed that the rigidity theory of homogeneous spaces (developed by Margulis, Ratner and
others) has a definite resonance in the highly inhomogeneous, but equally fundamental realm of moduli spaces,
where many developments are still unfolding.
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NEVANLINNA PRIZE

The Nevanlinna Prize is awarded once every 4 years at the International Congress of Mathematicians, for
outstanding contributions in mathematical aspects of information sciences

Subhash Khot

Citation sentence:

Subhash Khot’s prescient definition of the “Unique Games” problem, and his leadership in the effort to
understand its complexity and its pivotal role in the study of efficient approximation of optimization problems,
have produced breakthroughs in algorithmic design and approximation hardness, and new exciting interactions
between computational complexity, analysis and geometry.

Citation in subordinate clause form:

[Subhash Khot is awarded the Nevanlinna Prize]
for his prescient definition of the “Unique Games” problem, and leading the effort to understand its complexity
and its pivotal role in the study of efficient approximation of optimization problems; his work has led to
breakthroughs in algorithmic design and approximation hardness, and to new exciting interactions between
computational complexity, analysis and geometry.

Description in a few paragraphs:

Subhash Khot defined the “Unique Games” in 2002 , and subsequently led the effort to understand its
complexity and its pivotal role in the study of optimization problems. Khot and his collaborators demonstrated
that the hardness of Unique Games implies a precise characterization of the best approximation factors
achievable for a variety of NP-hard optimization problems. This discovery turned the Unique Games problem
into a major open problem of the theory of computation.

The ongoing quest to study its complexity has had unexpected benefits. First, the reductions used in the
above results identified new problems in analysis and geometry, invigorating analysis of Boolean functions, a
field at the interface of mathematics and computer science. This led to new central limit theorems, invariance
principles, isoperimetric inequalities, and inverse theorems, impacting research in computational complexity,
pseudorandomness, learning and combinatorics. Second, Khot and his collaborators used intuitions stemming
from their study of Unique Games to yield new lower bounds on the distortion incurred when embedding one
metric space into another, as well as constructions of hard families of instances for common linear and semi-
definite programming algorithms. This has inspired new work in algorithm design extending these methods,
greatly enriching the theory of algorithms and its applications.
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GAUSS PRIZE

The Gauss Prize is awarded once every 4 years to honor a scientist whose mathematical research has had
an impact outside mathematics – either in technology, in business, or simply in peopple’s everyday lives

Stanley Osher

Citation sentence:

Stanley Osher has made influential contributions to several fields in applied mathematics, and his far-ranging
inventions have changed our conception of physical, perceptual, and mathematical concepts, giving us new
tools to apprehend the world.

Citation in subordinate clause form:

[Stanley Osher is awarded the Gauss Prize]
for his influential contributions to several fields in applied mathematics, and for his far-ranging inventions
that have changed our conception of physical, perceptual, and mathematical concepts, giving us new tools to
apprehend the world.

Description in a few paragraphs:

Stanley Osher has made influential contributions in a broad variety of fields in applied mathematics. These
include high resolution shock capturing methods for hyperbolic equations, level set methods, PDE based
methods in computer vision and image processing, and optimization. His numerical analysis contributions,
including the Engquist-Osher scheme, TVD schemes, entropy conditions, ENO and WENO schemes and
numerical schemes for Hamilton-Jacobi type equations have revolutionized the field. His level set contribu-
tions include new level set calculus, novel numerical techniques, fluids and materials modeling, variational
approaches, high codimension motion analysis, geometric optics, and the computation of discontinuous so-
lutions to Hamilton-Jacobi equations; level set methods have been extremely influential in computer vision,
image processing, and computer graphics. In addition, such new methods have motivated some of the most
fundamental studies in the theory of PDEs in recent years, completing the picture of applied mathematics
inspiring pure mathematics.

Stanley Osher has unique mentoring qualities: he has influenced the education of generations of outstanding
applied mathematicians, and thanks to his entrepreneurship he has successfully brought his mathematics to
industry.

Trained as an applied mathematician and an applied mathematician all his life, Osher continues to surprise
the mathematical and numerical community with the invention of simple and clever schemes and formulas.
His far-ranging inventions have changed our conception of physical, perceptual, and mathematical concepts,
and have given us new tools to apprehend the world.
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CHERN MEDAL AWARD

The Chern Medal is awarded every 4 years on the occasion of the International Congress of Mathematicians to
an individual whose accomplishments warrant the highest level of recognition for outstanding achievements
in the field of mathematics

Phillip Griffiths

Citation sentence:

The 2014 Chern Medal is awarded to Phillip Griffiths for his groundbreaking and transformative development
of transcendental methods in complex geometry, particularly his seminal work in Hodge theory and periods
of algebraic varieties.

Citation Sentence in subordinate clause form:

[Phillip Griffiths is awarded the 2014 Chern Medal]
for his groundbreaking and transformative development of transcendental methods in complex geometry,
particularly his seminal work in Hodge theory and periods of algebraic varieties.

Description in a few paragraphs:

Phillip Griffiths’s ongoing work in algebraic geometry, differential geometry, and differential equations has
stimulated a wide range of advances in mathematics over the past 50 years and continues to influence and
inspire an enormous body of research activity today.

He has brought to bear both classical techniques and strikingly original ideas on a variety of problems in real
and complex geometry and laid out a program of applications to period mappings and domains, algebraic
cycles, Nevanlinna theory, Brill-Noether theory, and topology of Kähler manifolds.

A characteristic of Griffithss work is that, while it often has a specific problem in view, it has served in multiple
instances to open up an entire area to research.

Early on, he made connections between deformation theory and Hodge theory through infinitesimal methods,
which led to his discovery of what are now known as the Griffiths infinitesimal period relations. These methods
provided the motivation for the Griffiths intermediate Jacobian, which solved the problem of showing algebraic
equivalence and homological equivalence of algebraic cycles are distinct. His work with C.H. Clemens on the
non-rationality of the cubic threefold became a model for many further applications of transcendental methods
to the study of algebraic varieties.

His wide-ranging investigations brought many new techniques to bear on these problems and led to insights
and progress in many other areas of geometry that, at first glance, seem far removed from complex geometry.
His related investigations into overdetermined systems of differential equations led a revitalization of this
subject in the 1980s in the form of exterior differential systems, and he applied this to deep problems in
modern differential geometry: Rigidity of isometric embeddings in the overdetermined case and local existence
of smooth solutions in the determined case in dimension 3, drawing on deep results in hyperbolic PDEs
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(in collaborations with Berger, Bryant and Yang), as well as geometric formulations of integrability in the
calculus of variations and in the geometry of Lax pairs and treatises on the geometry of conservation laws
and variational problems in elliptic, hyperbolic and parabolic PDEs and exterior differential systems.

All of these areas, and many others in algebraic geometry, including web geometry, integrable systems, and
Riemann surfaces, are currently seeing important developments that were stimulated by his work.

His teaching career and research leadership has inspired an astounding number of mathematicians who have
gone on to stellar careers, both in mathematics and other disciplines. He has been generous with his time,
writing many classic expository papers and books, such as “Principles of Algebraic Geometry”, with Joseph
Harris, that have inspired students of the subject since the 1960s.

Griffiths has also extensively supported mathematics at the level of research and education through service on
and chairmanship of numerous national and international committees and boards committees and boards. In
addition to his research career, he served 8 years as Duke’s Provost and 12 years as the Director of the Institute
for Advanced Study, and he currently chairs the Science Initiative Group, which assists the development of
mathematical training centers in the developing world.

His legacy of research and service to both the mathematics community and the wider scientific world continues
to be an inspiration to mathematicians world-wide, enriching our subject and advancing the discipline in
manifold ways.
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LEELAVATI PRIZE (Sponsored by Infosys)

The Leelavati Prize is intended to accord high recognition and great appreciation of the IMU and Infosys
of outstanding contributions to increasing public awareness of mathematics as an intellectual discipline and
the crucial role it plays in diverse human endeavors

Adrián Paenza

Citation sentence:

Adrián Paenza’s contributions have definitively changed the mind of a whole country about the way it perceives
mathematics in daily life. He accomplished this through his books, his TV programs, and his unique gift of
enthusiasm and passion in communicating the beauty and joy of mathematics.

Citation in subordinate clause form:

[Adrián Paenza is awarded the Leelavati Prize]
for his decisive contributions to changing the mind of a whole country about the way it perceives mathematics
in daily life, and in particular for his books, his TV programs, and his unique gift of enthusiasm and passion
in communicating the beauty and joy of mathematics.

Description in a few paragraphs:

Adrián Paenza has been the host of the long-running weekly TV program “Cient́ıficos Industria Argentina”
(“Scientists Made in Argentina”), currently in its twelfth consecutive season in an open TV channel. Within
a beautiful and attractive interface, each program consists of interviews with mathematicians and scientists
of very different disciplines, and ends with a mathematical problem, the solution of which is given in the next
program.

He has also been the host of the TV program “Alterados por Pi” (“Altered by Pi”), a weekly half-hour show
exclusively dedicated to the popularization of mathematics; this show is recorded in front of a live audience
in several public schools around the country.

Since 2005, he has written a weekly column about general science, but mainly about mathematics, on the
back page of Página 12, one of Argentinas three national newspapers. His articles include historical notes,
teasers and even proofs of theorems.

He has written eight books dedicated to the popularization of mathematics: five under the name “Matemática
. . . ¿estás ah́ı?” (“Math . . . are you there?”), published by Siglo XXI Editores, which have sold over a million
copies. The first of the series, published in September 2005, headed the lists of best sellers for a record of
73 consecutive weeks, and is now in its 22nd edition. The enormous impact and influence of these books has
extended throughout Latin America and Spain; they have also been published in Portugal, Italy, the Czech
Republic, and Germany; an upcoming edition has been recently translated also into Chinese.
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Laudators and lecturers for all the prizes:

Etienne Ghys for Avila
Benedict Gross for Bhargava
Ofer Zeitouni for Hairer
Curt McMullen for Mirzakhani
Sanjeev Arora for Khot

Gauss lecturer: Chi-Wang Shu

Chern lecturer: Mark Green

IMU President Ingrid Daubechies and IMU Secretary Martin Grötschel can also be contacted for some (con-
fidential) information about the IMU Award winners.
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The Work of Artur Avila

Artur Avila has made outstanding contributions to dynamical systems,
analysis, and other areas, in many cases proving decisive results that solved
long-standing open problems. A native of Brazil who spends part of his time
there and part in France, he combines the strong mathematical cultures and
traditions of both countries. Nearly all his work has been done through
collaborations with some 30 mathematicians around the world. To these
collaborations Avila brings formidable technical power, the ingenuity and
tenacity of a master problem-solver, and an unerring sense for deep and
significant questions.

Avila’s achievements are many and span a broad range of topics; here
we focus on only a few highlights. One of his early significant results closes
a chapter on a long story that started in the 1970s. At that time, physicists,
most notably Mitchell Feigenbaum, began trying to understand how chaos
can arise out of very simple systems. Some of the systems they looked at
were based on iterating a mathematical rule such as 3x(1−x). Starting with
a given point, one can watch the trajectory of the point under repeated
applications of the rule; one can think of the rule as moving the starting
point around over time. For some maps, the trajectories eventually settle
into stable orbits, while for other maps the trajectories become chaotic.

Out of the drive to understand such phenomena grew the subject of
discrete dynamical systems, to which scores of mathematicians contributed
in the ensuing decades. Among the central aims was to develop ways to
predict long-time behavior. For a trajectory that settles into a stable or-
bit, predicting where a point will travel is straight-forward. But not for
a chaotic trajectory: Trying to predict exactly where an initial point goes
after a long time is akin to trying to predict, after a million tosses of a coin,
whether the million-and-first toss will be a head or a tail. But one can model
coin-tossing probabilistically, using stochastic tools, and one can try to do
the same for trajectories. Mathematicians noticed that many of the maps
that they studied fell into one of two categories: “regular”, meaning that the
trajectories eventually become stable, or “stochastic”, meaning that the tra-
jectories exhibit chaotic behavior that can be modeled stochastically. This
dichotomy of regular vs. stochastic was proved in many special cases, and
the hope was that eventually a more-complete understanding would emerge.
This hope was realized in a 2003 paper by Avila, Welington de Melo, and
Mikhail Lyubich, which brought to a close this long line of research. Avila
and his co-authors considered a wide class of dynamical systems—namely,
those arising from maps with a parabolic shape, known as unimodal maps—
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and proved that, if one chooses such a map at random, the map will be either
regular or stochastic. Their work provides a unified, comprehensive picture
of the behavior of these systems.

Another outstanding result of Avila is his work, with Giovanni Forni, on
weak mixing. If one attempts to shuffle a deck of cards by only cutting the
deck—that is, taking a small stack off the top of the deck and putting the
stack on the bottom—then the deck will not be truly mixed. The cards are
simply moved around in a cyclic pattern. But if one shuffles the cards in the
usual way, by interleaving them—so that, for example, the first card now
comes after the third card, the second card after the fifth, and so on—then
the deck will be truly mixed. This is the essential idea of the abstract notion
of mixing that Avila and Forni considered. The system they worked with
was not a deck of cards, but rather a closed interval that is cut into several
subintervals. For example, the interval could be cut into four pieces, ABCD,
and then one defines a map on the interval by exchanging the positions of the
subintervals so that, say, ABCD goes to DCBA. By iterating the map, one
obtains a dynamical system called an “interval exchange transformation”.

Considering the parallel with cutting or shuffling a deck of cards, one can
ask whether an interval exchange transformation can truly mix the subin-
tervals. It has long been known that this is impossible. However, there are
ways of quantifying the degree of mixing that lead to the notion of “weak
mixing”, which describes a system that just barely fails to be truly mix-
ing. What Avila and Forni showed is that almost every interval exchange
transformation is weakly mixing; in other words, if one chooses at random
an interval exchange transformation, the overwhelmingly likelihood is that,
when iterated, it will produce a dynamical system that is weakly mixing.
This work is connected to more-recent work by Avila and Vincent Delecroix,
which investigates mixing in regular polygonal billiard systems. Billiard sys-
tems are used in statistical physics as models of particle motion. Avila and
Delecroix found that almost all dynamical systems arising in this context
are weakly mixing.

In the two lines of work mentioned above, Avila brought his deep knowl-
edge of the area of analysis to bear on questions in dynamical systems.
He has also sometimes done the reverse, applying dynamical systems ap-
proaches to questions in analysis. One example is his work on quasi-periodic
Schrödinger operators. These are mathematical equations for modeling
quantum mechanical systems. One of the emblematic pictures from this
area is the Hofstadter butterfly, a fractal pattern named after Douglas Hof-
stadter, who first came upon it in 1976. The Hofstadter butterfly represents
the energy spectrum of an electron moving under an extreme magnetic field.
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Physicists were stunned when they noticed that, for certain parameter values
in the Schrödinger equation, this energy spectrum appeared to be the Cantor
set, which is a remarkable mathematical object that embodies seemingly in-
compatible properties of density and sparsity. In the 1980s, mathematician
Barry Simon popularized the “Ten Martini Problem” (so named by Mark
Kac, who offered to buy 10 martinis for anyone who could solve it). This
problem asked whether the spectrum of one specific Schrödinger operator,
known as the almost-Mathieu operator, is in fact the Cantor set. Together
with Svetlana Jitomirskaya, Avila solved this problem.

As spectacular as that solution was, it represents only the tip of the ice-
berg of Avila’s work on Schrödinger operators. Starting in 2004, he spent
many years developing a general theory that culminated in two preprints
in 2009. This work establishes that, unlike the special case of the almost-
Mathieu operator, general Schrödinger operators do not exhibit critical be-
havior in the transition between different potential regimes. Avila used
approaches from dynamical systems theory in this work, including renor-
malization techniques.

A final example of Avila’s work is a very recent result that grew out of his
proof of a regularization theorem for volume-preserving maps. This proof
resolved a conjecture that had been open for thirty years; mathematicians
hoped that the conjecture was true but could not prove it. Avila’s proof
has unblocked a whole direction of research in smooth dynamical systems
and has already borne fruit. In particular, the regularization theorem is
a key element in an important recent advance by Avila, Sylvain Crovisier,
and Amie Wilkinson. Their work, which is still in preparation, shows that
a generic volume-preserving diffeomorphism with positive metric entropy is
an ergodic dynamical system.

With his signature combination of tremendous analytical power and deep
intuition about dynamical systems, Artur Avila will surely remain a math-
ematical leader for many years to come.
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Born in Brazil in 1979, Artur Avila is also a naturalized French citizen.
He received his PhD in 2001 from the Instituto Nacional de Matemática Pura
e Aplicada (IMPA) in Rio de Janeiro, where his advisor was Welington de
Melo. Since 2003 Avila has been researcher in the Centre National de la
Recherche Scientifique and became a Directeur de recherche in 2008; he is
attached to the Institut de Mathématiques de Jussieu-Paris Rive Gauche.
Also, since 2009 he has been a researcher at IMPA. Among his previous
honors are the Salem Prize (2006), the European Mathematical Society Prize
(2008), the Grand Prix Jacques Herbrand of the French Academy of Sciences
(2009), the Michael Brin Prize (2011), the Prêmio of the Sociedade Brasileira
de Matemática (2013), and the TWAS Prize in Mathematics (2013) of the
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The Work of Manjul Bhargava

Manjul Bhargava’s work in number theory has had a profound influence
on the field. A mathematician of extraordinary creativity, he has a taste
for simple problems of timeless beauty, which he has solved by developing
elegant and powerful new methods that offer deep insights.

When he was a graduate student, Bhargava read the monumental Disqui-
sitiones Arithmeticae, a book about number theory by Carl Friedrich Gauss
(1777-1855). All mathematicians know of the Disquisitiones, but few have
actually read it, as its notation and computational nature make it difficult
for modern readers to follow. Bhargava nevertheless found the book to be
a wellspring of inspiration. Gauss was interested in binary quadratic forms,
which are polynomials ax2 +bxy+cy2, where a, b, and c are integers. In the
Disquisitiones, Gauss developed his ingenious composition law, which gives
a method for composing two binary quadratic forms to obtain a third one.
This law became, and remains, a central tool in algebraic number theory.
After wading through the 20 pages of Gauss’s calculations culminating in
the composition law, Bhargava knew there had to be a better way.

Then one day, while playing with a Rubik’s cube, he found it. Bhargava
thought about labeling each corner of a cube with a number and then slic-
ing the cube to obtain 2 sets of 4 numbers. Each 4-number set naturally
forms a matrix. A simple calculation with these matrices resulted in a bi-
nary quadratic form. From the three ways of slicing the cube, three binary
quadratic forms emerged. Bhargava then calculated the discriminants of
these three forms. (The discriminant, familiar to some as the expression
“under the square root sign” in the quadratic formula, is a fundamental
quantity associated to a polynomial.) When he found the discriminants
were all the same, as they are in Gauss’s composition law, Bhargava real-
ized he had found a simple, visual way to obtain the law.

He also realized that he could expand his cube-labeling technique to other
polynomials of higher degree (the degree is the highest power appearing in
the polynomial; for example, x3 − x + 1 has degree 3). He then discovered
13 new composition laws for higher-degree polynomials. Up until this time,
mathematicians had looked upon Gauss’s composition law as a curiosity
that happened only with binary quadratic forms. Until Bhargava’s work, no
one realized that other composition laws existed for polynomials of higher
degree.

One of the reasons Gauss’s composition law is so important is that it
provides information about quadratic number fields. A number field is built
by extending the rational numbers to include non-rational roots of a poly-
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nomial; if the polynomial is quadratic, then one obtains a quadratic num-
ber field. The degree of the polynomial and its discriminant are two basic
quantities associated with the number field. Although number fields are
fundamental objects in algebraic number theory, some basic facts are un-
known, such as how many number fields there are for a fixed degree and
fixed discriminant. With his new composition laws in hand, Bhargava set
about using them to investigate number fields.

Implicit in Gauss’s work is a technique called the “geometry of numbers”;
the technique was more fully developed in a landmark 1896 work of Hermann
Minkowski (1864-1909). In the geometry of numbers, one imagines the plane,
or 3-dimensional space, as populated by a lattice that highlights points with
integer coordinates. If one has a quadratic polynomial, counting the number
of integer lattice points in a certain region of 3-dimensional space provides
information about the associated quadratic number field. In particular, one
can use the geometry of numbers to show that, for discriminant with absolute
value less than X, there are approximately X quadratic number fields. In the
1960s, a more refined geometry of numbers approach by Harold Davenport
(1907-1969) and Hans Heilbronn (1908-1975) resolved the case of degree 3
number fields. And then progress stopped. So a great deal of excitement
greeted Bhargava’s work in which he counted the number of degree 4 and
degree 5 number fields having bounded discriminant. These results use
his new composition laws, together with his systematic development of the
geometry of numbers, which greatly extended the reach and power of this
technique. The cases of degree bigger than 5 remain open, and Bhargava’s
composition laws will not resolve those. However, it is possible that those
cases could be attacked using analogues of his composition laws.

Recently, Bhargava and his collaborators have used his expansion of the
geometry of numbers to produce striking results about hyperelliptic curves.
At the heart of this area of research is the ancient question of when an
arithmetic calculation yields a square number. One answer Bhargava found
is strikingly simple to state: A typical polynomial of degree at least 5 with
rational coefficients never takes a square value. A hyperelliptic curve is the
graph of an equation of the form y2 = a polynomial with rational coefficients.
In the case where the polynomial has degree 3, the graph is called an elliptic
curve. Elliptic curves have especially appealing properties and have been
the subject of a great deal of research; they also played a prominent role in
Andrew Wiles’s celebrated proof of Fermat’s Last Theorem.

A key question about a hyperelliptic curve is how one can count the
number of points that have rational coordinates and that lie on the curve.
It turns out that the number of rational points is closely related to the
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degree of the curve. For curves of degree 1 and 2, there is an effective
way of finding all the rational points. For degree 5 and higher, a theorem of
Gerd Faltings (a 1986 Fields Medalist) says that there are only finitely many
rational points. The most mysterious cases are those of degree 3–namely,
the case of elliptic curves–and of degree 4. There is not even any algorithm
known for deciding whether a given curve of degree 3 or 4 has finitely many
or infinitely many rational points.

Such algorithms seem out of reach. Bhargava took a different tack and
asked, what can be said about the rational points on a typical curve? In joint
work with Arul Shankar and also with Christopher Skinner, Bhargava came
to the surprising conclusion that a positive proportion of elliptic curves have
only one rational point and a positive proportion have infinitely many. Anal-
ogously, in the case of hyperelliptic curves of degree 4, Bhargava showed that
a positive proportion of such curves have no rational points and a positive
proportion have infinitely many rational points. These works necessitated
counting lattice points in unbounded regions of high-dimensional space, in
which the regions spiral outward in complicated “tentacles”. This counting
could not have been done without Bhargava’s expansion of the geometry of
numbers technique.

Bhargava also used his expansion of the geometry of numbers to look at
the more general case of higher degree hyperelliptic curves. As noted above,
Faltings’ theorem tells us that for curves of degree 5 or higher, the number
of rational points is finite, but the theorem does not give any way of finding
the rational points or saying exactly how many there are. Once again,
Bhargava examined the question of what happens for a “typical” curve.
When the degree is even, he found that the typical hyperelliptic curve has no
rational points at all. Joint work with Benedict Gross, together with follow-
up work of Bjorn Poonen and Michael Stoll, established the same result for
the case of odd degree. These works also offer quite precise estimates of how
quickly the number of curves having rational points decreases as the degree
increases. For example, Bhargava’s work shows that, for a typical degree
10 polynomial, there is a greater than 99% chance that the curve has no
rational points.

A final example of Bhargava’s achievements is his work with Jonathan
Hanke on the so-called “290-Theorem”. This theorem concerns a question
that goes back to the time of Pierre de Fermat (1601-1665), namely, which
quadratic forms represent all integers? For example, not all integers are
the sum of two squares, so x2 + y2 does not represent all integers. Neither
does the sum of three squares, x2 + y2 + z2. But, as Joseph-Louis Lagrange
(1736-1813) famously established, the sum of four squares, x2+y2+z2+w2,
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does represent all integers. In 1916, Srinivasa Ramanujan (1887-1920) gave
54 more examples of such forms in 4 variables that represent all integers.
What other such “universal” forms could be out there? In the early 1990s,
John H. Conway and his students, particularly William Schneeberger and
Christopher Simons, looked at this question a different way, asking whether
there is a number c such that, if a quadratic form represents integers less
than c, it represents all integers. Through extensive computations, they
conjectured that c could perhaps be taken as small as 290. They made
remarkable progress, but it was not until Bhargava and Hanke took up the
question that it was fully resolved. They found a set of 29 integers, up to and
including 290, such that, if a quadratic form (in any number of variables)
represents these 29 integers, then it represents all integers. The proof is a
feat of ingenuity combined with extensive computer programming.

In addition to being one of the world’s leading mathematicians, Bhargava
is an accomplished musician; he plays the Indian instrument known as the
tabla at a professional level. An outstanding communicator, he has won
several teaching awards, and his lucid and elegant writing has garnered a
prize for exposition.

Bhargava has a keen intuition that leads him unerringly to deep and
beautiful mathematical questions. With his immense insight and great tech-
nical mastery, he seems to bring a “Midas touch” to everything he works
on. He surely will bring more delights and surprises to mathematics in the
years to come.
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Phillip Griffiths

Phillip Griffiths is a singular figure in mathematics. For more than 50
years, he has been a leader in research, making contributions at the high-
est level in several areas, most notably algebraic geometry and differential
geometry. He has also been an outstanding teacher and mentor for young
people entering mathematics. His exposition has garnered accolades, and
his books have had a lasting influence. On top of these contributions to the
field of mathematics, Griffiths has had a substantial impact on the entire
scientific enterprise the world over, through his extensive work on science
policy, through his leadership of the Institute for Advanced Study for more
than a decade, and through his work on behalf of science in the developing
world. To have contributed at such a high level to so many different aspects
of mathematical and scientific life is truly extraordinary.

Right after he received his PhD from Princeton University in 1962, un-
der the direction of Donald Spencer, Griffiths went to the University of
California, Berkeley, where he was a Miller Fellow. There, he came into
contact with Shiing-Shen Chern (1911-2004), after whom the Chern Medal
is named. One of the towering figures of 20th century mathematics, Chern
was a geometer of wide interests and deep insights. He also had a profound
sense of responsibility for developing the culture and community of math-
ematics. He made a lasting impression on the young Griffiths. The two
became collaborators and lifelong friends.

In his mathematics research, Griffiths is known not so much for having
proved big theorems or for things named after him—though he certainly has
both. Rather, he is known more for pioneering new approaches or strategies
that have proven very fruitful, for developing connections between areas that
had previously seemed unrelated, and for opening new lines of research that
he and others then pursued. He also has the ability, despite the formidable
technical machinery used in his work, to hold fast to the intuitive heart of
the problem at hand, noted Robert Bryant of Duke University, who served
as chair of the 2014 Chern Medal selection committee. “Even when math-
ematicians discuss very abstract geometric concepts, they often speak as
though there are tangible objects being represented and attach an almost
physical sense to them,” said Bryant. “Exactly how this sort of metaphor-
ical sense contributes to our understanding of the concepts is mysterious,
but it is frequently the hallmark of great insight. Griffiths has an amazingly
strong ability to invoke those kinds of intuitions and to communicate them
to others.”

One of Griffiths’ great contributions has been to perceive this intuition
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in the work of past mathematical masters and reinterpret it in modern
terms. For example, mathematicians looked askance at the work of the
Italian school of algebraic geometry of the late 19th and early 20th cen-
tury because the work did not conform to new standards of rigor that arose
afterward. The Italian algebraic geometers nevertheless had a genius for
geometric intuition. Griffiths imbibed this intuition and made it precise,
using modern techniques. He also absorbed and revived interest in the work
of Élie Cartan (1869-1951) on exterior differential systems. While it was
full of tremendous insights, Cartan’s work had been neglected because was
difficult to read and had not been put into a systematic framework. Af-
ter Griffiths and his collaborators developed and expanded on ideas from
Cartan’s work, exterior differential systems went on to have a significant
impact on the theory of partial differential equations. “There was a kernel
of beautiful geometric ideas that ran through these classic works and—once
you got through the old-fashioned language and notations—an extraordi-
nary relevance to modern problems,” said Mark Green of the University of
California at Los Angeles, who will be presenting the laudatio for Griffiths.
“Griffiths was a great believer in the power of deep geometric ideas, and he
encouraged his students to engage with these classic books and papers.”

Four volumes of the selected works of Griffiths have appeared: Analytic
geometry, algebraic geometry, variations of Hodge structures, and differen-
tial systems. There is also ample material for a fifth volume, which is under
consideration. This staggering output ranges over an enormous variety of
topics. Nevertheless, one can still perceive some unifying and powerful geo-
metric ideas that run through his work. An example can serve to illustrate
the nature of these ideas. A fundamental distinction in mathematics is be-
tween algebraic functions, such as the square root of x, and transcendental
functions, such as sine and cosine, which cannot be expressed algebraically.
An important insight that emerged in algebraic geometry over the course of
the 19th century is that objects described in terms of algebraic equations can
be productively studied using transcendental functions; this gives rise to the
subject known as transcendental algebraic geometry. For algebraic curves
in the plane, one aspect of these transcendental methods was embodied in
a construction known as the period map. However, when one goes beyond
curves to higher dimensions, genuinely new phenomena occur that no one
had anticipated until the work of Griffiths. He found an innovative way
to bring together modern methods, such as deformation theory and Hodge
theory, with the classic framework.

Not far off from these developments lies one of the major challenges in
mathematics, the Hodge Conjecture, which has been designated as one of
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the million-dollar Millennium Prize Problems of the Clay Mathematics Insti-
tute. W.D.V. Hodge (1903-1975) noted that to certain objects in algebraic
geometry—namely, algebraic cycles—one can associate a particular type of
object in topology, a “Hodge class”. The Hodge Conjecture asks whether
one can reverse this association: Can one take a Hodge class and find an
algebraic cycle with rational coefficients to which it is associated? While no
one has yet proved the Hodge Conjecture, Griffiths’ work has been a potent
force in shedding light on the contours of that problem and shaping much
of the research that has been done on it.

Often mathematicians are categorized as “problem solvers” or “theory
builders”; Griffiths does not quite fit into either group. “He’s an ‘under-
stander’,” said Bryant. “He wants to understand where an idea can go,
its connections to other ideas, and how it might illuminate a problem he’s
considering.” This drive to understand has made Griffiths an excellent com-
municator, not only among fellow researchers but for students as well. He
has had 29 PhD students, many of whom have gone on to outstanding careers
themselves; altogether, he has about 460 doctoral “descendents”. Griffiths’
mathematical writing is known for its clarity and polish as well as for the
way it opens new directions for research. A prominent example is his paper
“Periods of integrals on algebraic manifolds”, which appeared in the Bul-
letin of the American Mathematical Society in 1970 and received the AMS
Steele Prize the following year. His books have also had a wide influence,
particularly Principles of Algebraic Geometry, written with his former PhD
student Joseph Harris. Universally known by the shorthand “Griffiths and
Harris”, this textbook has become a standard reference for generations of
students.

After his Miller Fellowship at UC Berkeley, Griffiths became a faculty
member there. In 1967, he moved to Princeton University and in 1972 to
Harvard. His appointment in 1983 as provost of Duke University began his
work in administration, which, surprisingly, did not slow down at all his
research output. In 1991, he became director of the Institute for Advanced
Study (IAS) in Princeton, one of the world’s foremost research centers, par-
ticularly in the areas of mathematics and theoretical physics. Under his
12-year directorship, the IAS launched several new initiatives, including pro-
grams in theoretical computer science and theoretical biology. Also during
this time, three new buildings were completed, among them Simonyi Hall,
which now houses the IAS School of Mathematics.

Griffiths has been much sought after for his wise council in matters of
science and educational policy. As Green put it, “He is a person everyone
trusts to be fair and judicious.” Among the most prominent roles Griffiths
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played was as chair of COSEPUP, the Committee on Science, Engineering,
and Public Policy of the National Academies, from 1992 until 1999. In that
time, COSEPUP issued two especially influential reports, one on reshaping
graduate education in science and engineering, and the other on the various
facets of being an effective mentor in these areas. Griffiths also served on
the National Science Board, the policymaking body of the National Science
Foundation (1991-1996) and as secretary of the International Mathematical
Union (1999-2006).

While director of the IAS, Griffiths got to know James Wolfensohn, pres-
ident of the World Bank, who at the time served as an IAS trustee. Inspired
by this contact, Griffiths launched the Science Initiative Group (SIG), an
international team of leading scientists that aims to help developing coun-
tries build scientific capacity. Rather than imposing goals and frameworks
from outside, SIG helps native-born scientists to identify critical national
needs and to build the educational and research infrastructure required to
address them. SIG’s first effort was the Millennium Science Initiative, a
research and education program that was funded mainly by the World Bank
and that reached developing countries in Africa, Asia, and Latin Amer-
ica. Building on this experience, SIG launched RISE (Regional Initiative
in Science and Education), which is funded by the Carnegie Corporation of
New York and managed jointly by SIG and the African Academy of Sci-
ences. RISE supports university-based research and training networks in
sub-Saharan Africa, with the goal of preparing PhD-level scientists and en-
gineers. RISE has put special emphasis on participation by African women,
who have long been underrepresented in the sciences.

At 76 years of age, Griffiths shows little sign of slowing down. Now a
professor emeritus at the IAS, he remains deeply involved with SIG. Over
the past year he has teamed with other U.S. leaders in mathematics and sci-
ence on a program that aims to effect constructive change in post-secondary
mathematics education. And he is still doing research: His most recent
paper, written with Mark Green, was posted on the arXiv preprint server
in May 2014. With his distinguished legacy in mathematics research, his
profound impact on young people in the field, and his contributions to sup-
porting research and education around the globe, Griffiths is an inspiration
to many—but not one who is easily emulated, Green noted. To take on as
many projects as Griffiths has, “the rest of us would need extra hours in the
day.”
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The Work of Martin Hairer

Martin Hairer has made a major breakthrough in the study of stochastic
partial differential equations by creating a new theory that provides tools
for attacking problems that up to now had seemed impenetrable.

The subject of differential equations has its roots in the development
of calculus by Isaac Newton and Gottfried Leibniz in the 17th century. A
major motivation at that time was to understand the motion of the planets
in the solar system. Newton’s laws of motion can be used to formulate a
differential equation that describes, for example, the motion of the Earth
around the Sun. A solution to such an equation is a function that gives
the position of the Earth at any time t. In the centuries since, differential
equations have become ubiquitous across all areas of science and engineering
to describe systems that change over time.

A differential equation describing planetary motion is deterministic, mean-
ing that it determines exactly where a planet will be at a given time in the
future. Other differential equations are stochastic, meaning that they de-
scribe systems containing an inherent element of randomness. An example
is an equation that describes how a stock price will change over time. Such
an equation incorporates a term that represents fluctuations in the stock
market price. If one could predict exactly what the fluctuations would be,
one could predict the future stock price exactly (and get very rich!). How-
ever, the fluctuations, while having some dependence on the initial stock
price, are essentially random and unpredictable. The stock-price equation
is an example of a stochastic differential equation.

In the planetary-motion equation, the system changes with respect to
only one variable, namely, time. Such an equation is called an ordinary dif-
ferential equation (ODE). By contrast, partial differential equations (PDEs)
describe systems that change with respect to more than one variable, for
example, time and position. Many PDEs are nonlinear, meaning that the
terms in it are not simple proportions—for example, they might be raised to
an exponential power. Some of the most important natural phenomena are
governed by nonlinear PDEs, so understanding these equations is a major
goal for mathematics and the sciences. However, nonlinear PDEs are among
the most difficult mathematical objects to understand. Hairer’s work has
caused a great deal of excitement because it develops a general theory that
can be applied to a large class of nonlinear stochastic PDEs.

An example of a nonlinear stochastic PDE—and one that played an
important role in Hairer’s work—is the KPZ equation, which is named for
Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang, the physicists who
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proposed the equation in 1986 for the motion of growing interfaces. To gain
some insight into the nature of the equation, consider the following simplified
model for ballistic deposition. Particles move towards a substrate and stick
upon arrival; as a consequence, the substrate height grows linearly in time,
at the same time becoming increasingly more rough. In this context the KPZ
equation describes the time evolution of the interface between vacuum and
accumulated material. The randomness in the arrival positions and times
of the particles introduces a space-time white noise into the equation, thus
turning KPZ into a stochastic PDE, which describes the evolution over time
of the rough, irregular interface between the vacuum above and the material
accumulating below. A solution to the KPZ equation would provide, for any
time t and any point along the bottom edge of the substrate, the height of
the interface above that point.

The challenge the KPZ equation posed is that, although it made sense
from the point of view of physics, it did not make sense mathematically. A
solution to the KPZ equation should be a mathematical object that repre-
sents the rough, irregular nature of the interface. Such an object has no
smoothness; in mathematical terms, it is not differentiable. And yet two of
the terms in the KPZ equation call for the object to be differentiable. There
is a way to sidestep this difficulty by using an object called a distribution.
But then a new problem arises, because the KPZ equation is nonlinear: It
contains a square term, and distributions cannot be squared. For these rea-
sons, the KPZ equation was not well defined. Although researchers came up
with some technical tricks to ameliorate these difficulties for the special case
of the KPZ equation, the fundamental problem of its not being well defined
long remained an unresolved issue.

In a spectacular achievement, Hairer overcame these difficulties by de-
scribing a new approach to the KPZ equation that allows one to give a
mathematically precise meaning to the equation and its solutions. What
is more, in subsequent work he used the ideas he developed for the KPZ
equation to build a general theory, the theory of regularity structures, that
can be applied to a broad class of stochastic PDEs. In particular, Hairer’s
theory can be used in higher dimensions.

The basic idea of Hairer’s approach to the KPZ equation is the following.
Instead of making the usual assumption that the small random effects occur
on an infinitesimally small scale, he adopted the assumption that the random
effects occur on a scale that is small in comparison to the scale at which the
system is viewed. Removing the infinitesimal assumption, which Hairer
calls “regularizing the noise”, renders an equation that can be solved. The
resulting solution is not a solution to KPZ; rather, it can be used as the
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starting point to construct a sequence of objects that, in the limit, converges
to a solution of KPZ. And Hairer proved a crucial fact: the limiting solution
is always the same regardless of the kind of noise regularization that is used.

Hairer’s general theory addresses other, higher-dimensional stochastic
PDEs that are not well defined. For these equations, as with KPZ, the
main challenge is that, at very small scales, the behavior of the solutions
is very rough and irregular. If the solution were a smooth function, one
could carry out a Taylor expansion, which is a way of approximating the
function by polynomials of increasingly higher degree. But the roughness of
the solutions means they are not well approximated by polynomials. What
Hairer did instead is to define objects, custom-built for the equation at hand,
that approximate the behavior of the solution at small scales. These objects
then play a role similar to polynomials in a Taylor expansion. At each
point, the solution will look like an infinite superposition of these objects.
The ultimate solution is then obtained by gluing together the pointwise
superpositions. Hairer established the crucial fact that the ultimate solution
does not depend on the approximating objects used to obtain it.

Prior to Hairer’s work, researchers had made a good deal of progress in
understanding linear stochastic PDEs, but there was a fundamental block
to addressing nonlinear cases. Hairer’s new theory goes a long way towards
removing that block. What is more, the class of equations to which the
theory applies contains several that are of central interest in mathematics
and science. In addition, his work could open the way to understanding the
phenomenon of universality. Other equations, when rescaled, converge to
the KPZ equation, so there seems to be some universal phenomenon lurking
in the background. Hairer’s work has the potential to provide rigorous
analytical tools to study this universality.

Before developing the theory of regularity structures, Hairer made other
outstanding contributions. For example, his joint work with Jonathan Mat-
tingly constitutes a significant advance in understanding a stochastic version
of the Navier-Stokes equation, a nonlinear PDE that describes wave motion.

In addition to being one of the world’s top mathematicians, Hairer is a
very good computer programmer. While still a school student, he created
audio editing software that he later developed and successfully marketed as
“the Swiss army knife of sound editing”. His mathematical work does not
depend on computers, but he does find that programming small simulations
helps develop intuition.

With his commanding technical mastery and deep intuition about phys-
ical systems, Hairer is a leader in the field who will doubtless make many
further significant contributions.
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Subhash Khot

Typically, major math prizes are given for major results. But in this case, Subhash Khot is
receiving the Nevanlinna Prize in large part for a conjecture – and even more 
surprisingly, one whose truth experts can’t yet decide on.

But Khot’s Unique Games Conjecture has already amply proven its value, even should it 
ultimately be disproven. It has cast a bright light on previously dim areas of 
computational complexity and provided critical insight — and, yes, Khot has also used it 
to prove major results, ones that stand regardless of its truth.

The conjecture has opened up a particularly fruitful way of addressing the central 
question of the field of computational complexity: How hard are problems to solve? 
More precisely, if you found the cleverest possible way to solve a particular problem, 
how quickly could a computer find the answer using it?

Computer scientists are nearly certain that some problems are so difficult that computers 
can’t reliably find the answer at all, at least not in any reasonable amount of time (such as
before the universe ends). That’s the famous conjecture known as P ≠ NP, and it has 
resisted proof for four decades – though computer scientists have only become more 
convinced that it must be true over time.

So many researchers have moved on to the next question: If a problem is too hard for a 
computer to solve quickly and precisely, can it at least find a good approximation? In the 
real world, after all, a good approximation is usually enough.

Before Khot’s work, researchers had found a few problems for which the answer was no, 
but for most problems, they had little idea. Khot found a remarkably simple problem 
(called Unique Games) that seems to encapsulate what makes many problems hard to 
solve even approximately in a reasonable amount of time. His conjecture is that it’s not 
just hard but impossible to reliably find an approximate answer to Unique Games 
reasonably quickly. In a certain precise, technical sense, Unique Games seems to be the 
simplest really, really hard problem. 

Whether he’s right or wrong, his problem has “cleaved nature at its joints,” as the early 
taxonomist Carl Linnaeus put it. The conjecture is proving to be a kind of lever point, a 
spot where applying effort yields big results. Assuming the conjecture is true, Khot and 
others have shown that the vast majority of problems computer scientists care about also 
can’t be approximated. Not only that, but the conjecture has shed light on seemingly 
unrelated problems in geometry, Fourier analysis, and even the mathematics of foams and
voting, and those results don’t rely on its truth.

The Unique Games problem is an elaboration of one that a six-year-old could play with. 
Imagine that you have a box of crayons and a drawing of a bunch of bubbles, some of 
which have lines connecting them. (Computer scientists call such drawings “networks.”) 



Can you find an efficient way to color in the bubbles so that any two connected ones are 
different colors?

If your box has only two crayons (say yellow and purple), you can figure this out quite 
efficiently. Start with an arbitrary bubble and color it yellow. Since all the bubbles 
connected to it now have to be purple, color them in. Continue this way until you’ve 
either managed to color in the whole network or you’ve found a bubble that’s connected 
to both yellow and purple bubbles, making the project impossible.

If you add just one more crayon, though, this method fails, because when you color the 
first bubble yellow, you don’t know what color the connected ones have to be. So if you 
get to a bubble you can’t color in without breaking the rules, you don’t know if a different
selection earlier would have solved the problem. The difficulty isn’t just with that method
– no other method will reliably and efficiently solve the problem either. It been proven to 
be NP-hard — in other words, effectively impossible. 

Khot altered this problem slightly. He made it easier than the ordinary three-crayon 
problem by providing a rule so that whenever any bubble is colored in, the color of all 
connected bubbles is fixed. Then an algorithm like the earlier one applies, and it’s easy 
enough to determine if the network can be colored in without breaking the rules. But for 
networks that are duds — ones that can’t be colored in — Khot asked this: Which 
coloring breaks the fewest rules possible?

The Unique Games Conjecture (UGC) is that if you have lots of colors, you’ll never find 
an efficient method to color in the drawing that’s anywhere close to the best one no 
matter how clever you are. 

Khot developed the conjecture in 2001 (in a slightly different formulation, which the 
name was derived from). A couple of years later, computer scientists got the first glimmer
of its importance, when Khot and others found that if the UGC was true, then they could 
find firm limits on how well many other problems could be approximated. 

Here’s one: Imagine at a celebrity-studded party, guests sought out the stars to shake 
hands with them (but non-celebrity partygoers kept their hands to themselves with one 
another). If you know only who shook hands with whom, can you figure out the 
minimum number of celebrities that might have been at the party? A simple algorithm can
find an approximate solution for this, but it might specify as much as twice as many 
celebrities as are really needed. Computer scientists long imagined you could do better 
with a more sophisticated algorithm, but in 2003, Khot, together with Oded Regev, 
showed that if the UGC is true, they were wrong. That simple algorithm is the best you 
can do.

Khot’s next success came in 2005. Together with Ryan O’Donnell, Elchanan Mossel and 
Guy Kindler, Khot found that the UGC implied a similar limit for approximating 
solutions to a problem called “Max Cut,” which asks you to take a network and split it 
into two groups so that the maximum number of edges passes between them. Then in 



2008, Prasad Raghavendra showed that if the UGC is true, a very simple method can find
the best approximations for an enormous class of problems called “constraint satisfaction 
problems.” With this, computer scientists know exactly how well nearly any problem can 
be approximated.

Of course, the caveat is that all these results depend on the UGC being true. If it turns out
to be false, the entire sparkling, beautiful theory is a mirage.

But the conjecture has proved remarkably powerful independent of its truth. In the 
process of using the UGC to discover how well other problems could be approximated, 
Khot and others have proven several significant theorems in other areas, including 
geometry and Fourier analysis. 

These implications have even ranged as far as voting theory. Once all the votes in an 
election are cast, there are a variety of ways of determining the winner. One of the most 
obvious is that the election goes to the candidate with the majority of votes, but there are 
other choices too, such as the American electoral college system. Khot and his co-authors
used intuition from the UGC to propose that majority-rules is the method for counting 
votes in which a few miscounted votes is least likely to change the election result. This 
was indeed confirmed later by others.

Another group was working on proving that the UGC was true, and while their method 
failed, the work led them to another discovery: They found a shape that in a certain sense 
lies halfway between a square and a circle (though in many more than two dimensions). 
Like a square, copies can be placed next to each other horizontally and vertically to fill a 
whole space without gaps or overlaps, forming a multidimensional foam. But its 
perimeter is much smaller than a square – it’s closer to that of a circle, the object which 
has the smallest perimeter for the area contained. 

In the meantime, other researchers have worked to prove that the UGC is wrong, with 
equal lack of direct success, but with equal collateral benefits. Although they haven’t yet 
succeeded in finding an algorithm that can efficiently find a good approximate solution to
Unique Games, they have developed some excellent new algorithmic methods for other 
circumstances.

Efforts to prove the conjecture, to disprove it, and to discover its consequences have all 
proven enormously fruitful. The Unique Games Conjecture will be driving research in 
theoretical computer science for many years to come.



The Work of Maryam Mirzakhani

Maryam Mirzakhani has made striking and highly original contributions
to geometry and dynamical systems. Her work on Riemann surfaces and
their moduli spaces bridges several mathematical disciplines—hyperbolic ge-
ometry, complex analysis, topology, and dynamics—and influences them all
in return. She gained widespread recognition for her early results in hyper-
bolic geometry, and her most recent work constitutes a major advance in
dynamical systems.

Riemann surfaces are named after the 19th century mathematician Bern-
hard Riemann, who was the first to understand the importance of abstract
surfaces, as opposed to surfaces arising concretely in some ambient space.
Mathematicians building on Riemann’s insights understood more than 100
years ago that such surfaces can be classified topologically, i.e. up to defor-
mation, by a single number, namely, the number of handles. This number
is called the genus of the surface. The sphere has genus zero, the surface
of a coffee cup has genus one, and the surface of a proper pretzel has genus
three. Provided that one disregards the precise geometric shape, there is
exactly one surface of genus g for every positive integer g.

A surface becomes a Riemann surface when it is endowed with an addi-
tional geometric structure. One can think of this geometric structure as a
so-called complex structure, which allows one to do complex analysis on the
abstract surface. Since the complex numbers involve two real parameters, a
surface, which is two-dimensional over the real numbers, has only one com-
plex dimension and is sometimes called a complex curve. The following fact
links the theory of Riemann surfaces to algebraic geometry: Every complex
curve is an algebraic curve, meaning that the complex curve, although de-
fined abstractly, can be realized as a curve in a standard ambient space, in
which it is the zero set of suitably chosen polynomials. Thus, although a
Riemann surface is a priori an analytic object defined in terms of complex
analysis on abstract surfaces, it turns out to have an algebraic description
in terms of polynomial equations.

An alternative but equivalent way of defining a Riemann surface is
through the introduction of a geometry that allows one to measure angles,
lengths, and areas. The most important such geometry is hyperbolic geome-
try, the original example of a non-Euclidean geometry discovered by Bolyai,
Gauss, and Lobatchevski. The equivalence between complex algebraic and
hyperbolic structures on surfaces is at the root of the rich theory of Riemann
surfaces.

Mirzakhani’s early work concerns closed geodesics on a hyperbolic sur-
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face. These are closed curves whose length cannot be shortened by deforming
them. A now-classic theorem proved more than 50 years ago gives a precise
way of estimating the number of closed geodesics whose length is less than
some bound L. The number of closed geodesics grows exponentially with L;
specifically, it is asymptotic to eL/L for large L. This theorem is called the
“prime number theorem for geodesics”, because it is exactly analogous to
the usual “prime number theorem” for whole numbers, which estimates the
number of primes less than a given size. (In that case the number of primes
less than eL is asymptotic to eL/L for large L.)

Mirzakhani looked at what happens to the “prime number theorem for
geodesics” when one considers only the closed geodesics that are simple,
meaning that they do not intersect themselves. The behavior is very different
in this case: the growth of the number of geodesics of length at most L is no
longer exponential in L but is of the order of L6g−6, where g is the genus.
Mirzakhani showed that in fact the number is asymptotic to c · L6g−6 for
large L (going to infinity), where the constant c depends on the hyperbolic
structure.

While this is a statement about a single, though arbitrary, hyperbolic
structure on a surface, Mirzakhani proved it by considering all such struc-
tures simultaneously. The complex structures on a surface of genus g form a
continuous, or non-discrete, space, since they have continuous deformations.
While the underlying topological surface remains the same, its geometric
shape changes during a deformation. Riemann knew that these deforma-
tions depend on 6g − 6 parameters or “moduli”, meaning that the “moduli
space” of Riemann surfaces of genus g has dimension 6g − 6. However, this
says nothing about the global structure of moduli space, which is extremely
complicated and still very mysterious. Moduli space has a very intricate
geometry of its own, and different ways of looking at Riemann surfaces lead
to different insights into its geometry and structure. For example, thinking
of Riemann surfaces as algebraic curves leads to the conclusion that moduli
space itself is an algebraic object called an algebraic variety.

In Mirzakhani’s proof of her counting result for simple closed geodesics,
another structure on moduli space enters, a so-called symplectic structure,
which, in particular, allows one to measure volumes (though not lengths).
Generalizing earlier work of G. McShane, Mirzakhani establishes a link be-
tween the volume calculations on moduli space and the counting problem
for simple closed geodesics on a single surface. She calculates certain vol-
umes in moduli space and then deduces the counting result for simple closed
geodesics from this calculation.

This point of view led Mirzakhani to new insights into other questions
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about moduli space. One consequence was a new and unexpected proof of
a conjecture of Edward Witten (a 1990 Fields Medalist), one of the leading
figures in string theory. Moduli space has many special loci inside it that
correspond to Riemann surfaces with particular properties, and these loci
can intersect. For suitably chosen loci, these intersections have physical
interpretations. Based on physical intuition and calculations that were not
entirely rigorous, Witten made a conjecture about these intersections that
grabbed the attention of mathematicians. Maxim Kontsevich (a 1998 Fields
Medalist) proved Witten’s conjecture through a direct verification in 1992.
Fifteen years later, Mirzakhani’s work linked Witten’s deep conjecture about
moduli space to elementary counting problems of geodesics on individual
surfaces.

In recent years, Mirzakhani has explored other aspects of the geometry
of moduli space. As mentioned before, the moduli space of Riemann sur-
faces of genus g is itself a geometric object of 6g − 6 dimensions that has a
complex, and, in fact, algebraic structure. In addition, moduli space has a
metric whose geodesics are natural to study. Inspired by the work of Mar-
gulis, Mirzakhani and her co-workers have proved yet another analogue of
the prime number theorem, in which they count closed geodesics in moduli
space, rather than on a single surface. She has also studied certain dy-
namical systems (meaning systems that evolve with time) on moduli space,
proving in particular that the system known as the “earthquake flow”, which
was introduced by William Thurston (a 1982 Fields Medalist), is chaotic.

Most recently, Mirzakhani, together with Alex Eskin and, in part, Amir
Mohammadi, made a major breakthrough in understanding another dynam-
ical system on moduli space that is related to the behavior of geodesics in
moduli space. Non-closed geodesics in moduli space are very erratic and
even pathological, and it is hard to obtain any understanding of their struc-
ture and how they change when perturbed slightly. However, Mirzakhani
et al have proved that complex geodesics and their closures in moduli space
are in fact surprisingly regular, rather than irregular or fractal. It turns out
that, while complex geodesics are transcendental objects defined in terms
of analysis and differential geometry, their closures are algebraic objects de-
fined in terms of polynomials and therefore have certain rigidity properties.

This work has garnered accolades among researchers in the area, who are
working to extend and build on the new result. One reason the work sparked
so much excitement is that the theorem Mirzakhani and Eskin proved is
analogous to a celebrated result of Marina Ratner from the 1990s. Ratner
established rigidity for dynamical systems on homogeneous spaces—these
are spaces in which the neighborhood of any point looks just the same as
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that of any other point. By contrast, moduli space is totally inhomoge-
neous: Every part of it looks totally different from every other part. It is
astounding to find that the rigidity in homogeneous spaces has an echo in
the inhomogeneous world of moduli space.

Because of its complexities and inhomogeneity, moduli space has often
seemed impossible to work on directly. But not to Mirzakhani. She has
a strong geometric intuition that allows her to grapple directly with the
geometry of moduli space. Fluent in a remarkably diverse range of mathe-
matical techniques and disparate mathematical cultures, she embodies a rare
combination of superb technical ability, bold ambition, far-reaching vision,
and deep curiosity. Moduli space is a world in which many new territories
await discovery. Mirzakhani is sure to remain a leader as the explorations
continue.
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Stanley Osher is a one-man bridge between advanced mathematics and practical, 
real-world problems. Time and time again, he has engaged deeply with the world of the 
engineers and applied scientists and then developed mathematical techniques to solve 
their problems with unprecedented power, speed and elegance. And because he so finely 
tunes his solutions to their needs, his techniques have been widely adopted and have had 
an extraordinarily broad impact, helping to catch criminals, create animated movies, 
improve MRI scans, design computer chips, and much more.

One of his major contributions was developing the method of level sets with James 
Sethian. The basic problem is to mathematically describe a changing shape. Imagine, for 
example, that a drop of oil is floating in water, and you want to write an equation that will
predict how its shape will change with currents in the water. A traditional way to do this 
is to picture a set of buoys along the edge of the drop, connected by stretchy ropes. 
Moment by moment, you can then describe how the buoys move, giving you a good 
approximation of the overall shape.

That method doesn’t work so well, though, if your oil drop splits in half, as they 
sometimes do. It’s not so obvious how to describe that with the buoys, since you now also
need to cut the ropes between them and retie them. Or, suppose that two different oil 
drops merge – then some of your buoys disappear completely, or fall inside the other oil 
drop, or something. It gets messy.

Osher and Sethian suggested an entirely new approach. They imagine that the outline of 
the oil drop is a clean horizontal slice of some three-dimensional object. The rest of the 
shape of the object doesn’t much matter, as long as the slice is the right shape. They then 
apply the physical laws affecting the drop of oil (for the currents in the water, for 
example) to the entire three-dimensional object. To find the shape of the oil drop at 
another moment, they simply take the same horizontal slice of the object later. If the oil 
drop splits, the three-dimensional object has developed two separate humps. And if two 
drops come together, two “legs” of the object have converged.

http://en.wikipedia.org/wiki/Level_set_method#mediaviewer/File:Level_set_meth
od.jpg

Caption: Horizontal slices of the three-dimensional red object on the bottom show
the shape of an oil drop as it changes over time. This representation can gracefully
handle behavior like the drop cleaving in two. Credit: Wikimedia.

Although turning the problem of predicting the evolution of a two-dimensional object 
into predicting that of a three-dimensional one seems like it would only make things more
complicated, it solves all the bookkeeping problems with the buoy-and-ropes method and
gives a simple, powerful, clean representation that can handle any odd thing the oil drop 
might do.

This relatively simple idea turns out to be extremely powerful. For example, the level set 
method is now being used by every single major film animation company to animate 

http://en.wikipedia.org/wiki/Level_set_method#mediaviewer/File:Level_set_method.jpg
http://en.wikipedia.org/wiki/Level_set_method#mediaviewer/File:Level_set_method.jpg


fluids, including Pixar, Disney, ILM, Dreamworks, and more. It allows animators to 
apply the true laws of physics to the fluid, creating far more realistic images. The giant 
whirlpool maelstrom in Pirates of the Caribbean 3 and the dragon’s flaming breath in 
Harry Potter and the Goblet of Fire, for example, were created using level sets. One of 
Osher’s students, Ron Fedkiw of Stanford University, won an Academy Award for his 
work on film animation using these methods. 

Caption: This is not a photograph. This is a computer simulation of a ball flying 
through a flame and catching fire. It was created using Osher’s level set methods. 
Credit: Ron Fedkiw, Duc Nguyen and Doug Enright.

More practically, level set methods are useful for predicting weather, designing computer 
chips, identifying the source of an earthquake, modeling the growth of tumors, analyzing 
medical scans, and much, much more.

Another area that Osher has revolutionized is modeling the way that supersonic jets slice 
through the air. Air flows smoothly around planes flying at ordinary speeds, but when jets
approach the speed of sound, the air can’t get out of the way fast enough. As a result, the 
density, pressure, temperature and velocity of the air change essentially instantaneously. 
In mathematical terms, this instantaneous change is called a “discontinuity,” and it’s a 
really big problem, because traditional methods all depend on incremental changes. 
Osher, together with Amiram Harten, Bjorn Engquist and Chi-Wang Shu, developed new 
mathematical techniques that can handle these discontinuities. This enables computer 
modeling of the design of new supersonic jets. 

Osher then applied similar ideas to an entirely different problem: sharpening blurry 
images. The line in a photograph between the dark leg of a table and a light background 
is another example of a discontinuity. Together with Leonid Rudin, Osher applied the 
mathematical techniques he had developed for modeling supersonic jets to images and 
was able to pull out and sharpen these discontinuities. 



Their techniques also came from the recognition that much of the fuzz in a blurry image 
isn’t random: It comes from physical processes like the shake of the hand holding the 
camera. Identifying these processes and then reversing them reduces the blur. That’s 
easier said than done, though, because information is lost when the image is blurred. 
Osher’s methods can recover some of that by combining information from multiple 
images. And he developed very efficient algorithms to carry out the transformation.

Never content with merely developing theoretical methods, Osher (together with Rudin) 
created a company, Cognitech, to commercialize them. The most famous success of the 
company came during a trial after the 1992 Los Angeles riots. Rioters attacked a truck 
that happened to be driving through the area, throwing rocks at it, dragging the driver out 
of the cab, beating him to unconsciousness, and breaking his skull in 91 places. The 
entire attack was filmed by a TV helicopter (one of the attackers even danced over the 
victim’s unconscious body and flashed gang symbols to the helicopter). The footage was 
blurry, though, so prosecutors turned to Cognitech for help identifying the attackers. 
Investigators focused on a speck on the arm of one of the men – less than 1/6,000th the 
size of the total photograph – and the algorithms revealed it to be a rose-shaped tattoo. 
The man was later identified as Damian Monroe Williams, and he was convicted of the 
attack. Cognitech continues to be used by police departments across the country. 

 

Caption: The leftmost image is a blurry picture of TK. Osher’s methods sharpen it
into the middle image. The rightmost image is a picture of the same thing that is 
in focus.

Another of Osher’s clever algorithms allows people to get better MRI scans faster. 
Building on the compressive sensing ideas of David Donoho, Emmanuel Candes and 



Terence Tao, he generalized his image processing methods to any situation in which you 
want to present information using as little data as possible. Jpeg, for example, is an 
algorithm that stores images using fewer bytes, while losing only a small amount of 
detail. He developed algorithms to do the same thing in reverse, so that the scan gathers 
its data in compressed format, requiring less of it to get a clear view. Another example 
where these techniques apply is the “Netflix problem,” predicting what movies you will 
like from your favorites. The movies you’ve seen and liked are the data represented in 
compressed form, and the problem is to uncompress that to discover all the movies you 
will like. 

As diverse as Osher’s impacts on the world have been, they’ve all come from clever, 
efficient algorithms drawing on deep mathematics. “I write the algorithms that make the 
computer sing,” Osher told the Los Angeles Times. “I’m the Barry Manilow of 
mathematics.”



Citation for Adrián Paenza, Leelavati Prize 2014

Adrián Paenza has been awarded with the Leelavati Prize 2014 because of his
decisive contribution in changing the mind of a whole country about the way
that mathematics is perceived in daily life. He has accomplished this through
his books, his TV programs, and his unique gift of enthusiasm and passion in
communicating the beauty and joy of mathematics. 

At a very young age he received his PhD degree in Mathematics and taught at
the University of Buenos Aires between 1979 and 2002. During many years he
pursued a  parallel  life  as  a  successful  TV Sports  Journalist,  and also as a
Political Journalist. Since 2003 he found a way to integrate his mathematical
background with his journalism experience: he started a shining career as a
Science Journalist. 

• He  has  been  the  host  of  the  long  running  weekly  TV  program
“Científicos  Industria  Argentina”  (“Scientists  Made  in  Argentina”),
currently in its twelfth consecutive season in an open TV channel. Each
program, with a beautiful and attractive interface, consists of interviews
to mathematicians and scientists of very different disciplines, and ends
with  a  mathematical  problem,  whose  solution  is  given  in  the  next
program. 

• He  also  has  been  the  host  of  the  TV  program  “Alterados  por  Pi”
(“Altered by Pi”),  a  weekly half  hour show exclusively dedicated to
popularize maths. The show is recorded in front of a live audience in
several public schools around the country.  

• Since 2005, he has written a weekly column about general science, but
mainly about mathematics,  on the back page of “Página 12”,  one of
Argentina’s three  national  newspapers.  His  articles  include  historical
notes, teasers and even proofs of theorems. 

• He wrote eight books dedicated to the popularization of mathematics:
five  under  the  name  “Matemática…¿estás  ahí?”  (“Math…  are  you
there?),  published  by  Siglo  XXI  Editores,  which  have  sold  over  a
million copies.  The first  of  the series,  published in September 2005,
headed the lists of best sellers for a record of 73 consecutive weeks, and
is now in its 22nd edition. The enormous impact and influence of these
books has  extended throughout  Latin  America and Spain;  they have
been  published  in  Portugal,  Italy,  Czech  Republic,  Germany,  and
recently translated also to Chinese language for a next coming edition. 



It  is  remarkable  that,  by  his  personal  generosity, all  his  books were
made freely available at the Department of Math of the University of
Buenos Aires from the first day of publication and sale.

Paenza  also  has  been  always  a  champion  of  the  public  and  free
education. He introduced the idea (which was later implemented by the
Argentinean Education Minister) of developing a Federal program for
digital  literacy, inspired by the program “One laptop per child”.  His
books are distributed with no cost in these free laptops.

Nicholas Negroponte has said about his nomination:
I know Adrián and his work very well. He is an inspiration and a hero
for mathematics. His presence in the USA and Argentina has inspired
many  young  people.....not  to  mention  the  whole  Spanish  speaking
world. I cannot imagine a more qualified nomination.

And John Sulston said:
How delighted I am that Adrián Paenza is nominated for the prize.  It is
clear from the record that he has an enormous range and reach, and is
widely  appreciated  for  his  lucid  presentations.  He  was  intensely
interested not only in the science, but also by the insistence of me and
my  colleagues  on  open  data  release.   This  is  a  theme  that  he  has
returned to himself many times, defending the importance of public and
free education for everyone without cost restrictions. He and I therefore
found a shared passion during our conversation, and I greatly admire
the work he has done. I think Adrián is a wonderful candidate for the
Leelavati Prize.


